题目
Suppose that all the keys in a binary tree are distinct positive integers. Given the postorder and inorder traversal sequences, you are supposed to output the level order traversal sequence of the corresponding binary tree.
Each input file contains one test case. For each case, the first line gives a positive integer N (≤30), the total number of nodes in the binary tree. The second line gives the postorder sequence and the third line gives the inorder sequence. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print in one line the level order traversal sequence of the corresponding binary tree. All the numbers in a line must be separated by exactly one space, and there must be no extra space at the end of the line.
1
2
3
|
7
2 3 1 5 7 6 4
1 2 3 4 5 6 7
|
Sample Output:
代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
|
#include <iostream>
#include <cstdio>
#include <queue>
using namespace std;
struct node{
int data;
node* rchild;
node* lchild;
};
int post[35];
int in[35];
int level[35];
node* create(int postL,int postR,int inL,int inR)
{
if(postL>postR)
return NULL;
node* root=new node;
root->data=post[postR];
int k;
for(int i=inL;i<=inR;i++)
if(post[postR]==in[i])
k=i;
int lenl=k-inL;
//lchild
root->lchild=create(postL,postL+lenl-1,inL,k-1);
//rchild
root->rchild=create(postL+lenl,postR-1,k+1,inR);
return root;
}
void traversal(node* root)
{
queue<node*> Q;
Q.push(root);
int i=0;
while(!Q.empty())
{
node* tmp;
tmp=Q.front();
Q.pop();
level[i]=tmp->data;
i++;
if(tmp->lchild!=NULL)
Q.push(tmp->lchild);
if(tmp->rchild!=NULL)
Q.push(tmp->rchild);
}
}
int main()
{
int n;
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%d",&post[i]);
for(int i=0;i<n;i++)
scanf("%d",&in[i]);
node* root=new node;
root=create(0,n-1,0,n-1);
traversal(root);
for(int i=0;i<n-1;i++)
printf("%d ",level[i]);
printf("%d",level[n-1]);
return 0;
}
|
分析
二叉树的重建需要中序+{先序、后序、层序}中任意一个,后三种的目的是提供树根节点的序号,中序在获得根节点序号后可以把左子树和右子树区分开。
一次AC,开心~